Контакты

Как правильно собрать матрицу из светодиодов схема. Адресные светодиодные матрицы

Светодиодные матрицы представляют собой технологическое объединение на одной подложке нескольких светоизлучающих полупроводниковых кристаллов, с общей заливкой смесью люминофора и силикона.

Появление LED-матриц связано с разработкой (Chip-on-Board), что дословно переводится как «чип на плате». Эта технология пришла на смену SMD светодиодам, отличается высокой степенью автоматизации производства и привела к существенному снижению цен на светодиодные светильники и прожектора.

Виды и области применения

Сохраняя единый принцип размещения светодиодных кристаллов на теплопроводящей подложке, светодиодные матрицы существенно отличаются по количеству кристаллов на одном основании и способам их соединения между собой.

Количество кристаллов на одной подложке определяет итоговую мощность матрицы, которая может достигать сотен ватт на одно изделие. Мощные матричные источники света хорошо зарекомендовали себя в прожекторах и светильниках для уличного освещения. Способ соединения кристаллов между собой определяет возможности управления свечением отдельных кристаллов и параметры блока питания для матрицы. Последовательно-параллельная структура внутренних соединений дает возможность снизить ток и увеличить величину питающего напряжения, что находит свое отражение в характеристиках матричных изделий.

Еще одной особенностью внутренних соединений кристаллов между собой с внешними выводами выступает возможность использования светодиодных матричных структур в информационных табло и в графических или символьных экранах. Такие LED-матрицы находят свое применение в контрольно-измерительной аппаратуре и всевозможных инсталляциях рекламного характера.

В устаревших моделях, для информационных табло, графических или символьных экранов, светодиодные матрицы конструировались на основе DIP или SMD-светодиодов.

Принципиальная схема

Как отмечалось выше, последовательно-параллельная схема соединения светодиодных кристаллов между собой определяет требования к источнику питания матрицы. Чем выше напряжения питания, тем больше светодиодов объединены в последовательные цепи. Такая особенность снижает требования к выходным токам драйверов, но в случае выхода из строя одного кристалла в последовательной цепи, перестает излучать свет вся цепочка. Ток перераспределяется на рабочие LED-чипы, тем самым ускоряя их деградацию и серьезно уменьшая срок службы светодиодной матрицы в целом.

Для решения проблемы, некоторые производители соединяют все светодиодные чипы внутри матрицы одновременно последовательно и параллельно. Такая особенность значительно уменьшает возможность выхода из строя LED-матрицы вследствие перегорания одного чипа. Параллельное соединение светодиодов между собой в пределах одной матричной структуры требует больших выходных токов драйвера, но общая излучающая способность практически не страдает от выхода из строя одного или двух кристаллов. Матрицы для светодиодных табло имеют в своем составе сложную систему внутренней коммутации, что определяется требованиями управления каждым светодиодом в отдельности. Для управления такими LED-матрицами созданы специальные интегральные процессоры и микросхемы.

Подключение

В схемах подключения светодиодных матриц определяющими факторами их надежности выступают два ключевых момента - достаточная площадь радиатора для отвода тепла и стабилизация питающих токов. Оба этих фактора напрямую связаны с усиленной деградацией полупроводниковых кристаллов при превышении их температур выше максимально допустимой.

К повышению температуры кристалла приводит, как недостаточная площадь радиатора охлаждения, так и слишком высокий проходящий ток.

Рабочие величины постоянного тока указываются в параметрах светодиодных матриц, а для ориентировочного выбора площади радиатора можно использовать цифру 20-25 см² на 1 Вт мощности матрицы. При это следует учитывать, что такая площадь необходима при температурах окружающего воздуха до 35 °С. При более высоких температурах рабочую площадь радиатора следует увеличить либо дополнить активным охлаждением.

При выборе светодиодных матриц со встроенным драйвером и питанием от сети 220 В необходимо учесть, что такие источники света не подходят для освещения мест постоянного пребывания человека.

Отсутствие в схеме драйвера с питанием от сети 220 вольт электролитических конденсаторов большой емкости определяет высокий излучаемого света, вредное влияние которого на здоровье человека доказано множеством научных исследований.

Заключение

Совершенствование параметров светоизлучающих светодиодных кристаллов ведет к появлению все более мощных матричных структур, выходная мощность которых уже достигла 300 и более Вт.

Такая тенденция, в сочетании с повышением удельного светового потока на 1 Вт подводимой мощности, определяет дальнейшее развитие светодиодных матриц и их опережающее развитие на рынке осветительной техники.

Читайте так же

Светодиодные дисплеи-матрицы 8х8 бывают различных размеров и с ними интересно работать. Большие промышленные сборки имеют размер около 60 х 60 мм. Однако, если вы ищете намного большие LED матрицы, их найти трудно.

В этом проекте мы будем строить реально большую светодиодную матрицу LED дисплея, который составлен из нескольких крупных 8х8 светодиодных модулей, последовательно соединенных друг с другом. Каждый из этих модулей по размеру около 144 х 144 мм.

Особенность этого дисплея заключается в том, что при необходимости можно смотреть на фон позади него. Это дает свободу в творческом использовании этих дисплеев, например размещение их спереди от стеклянных панелей, чтоб была возможность увидеть происходящее позади дисплея.

Для этого проекта мы будем использовать 10 мм . Вы можете использовать и другие размеры. Обычно доступны размеры 3 мм, 5 мм, 8 мм, и 10 мм.

Хотя дисплей не предназначен для работы с любым микроконтроллером, мы будем использовать популярные платы Arduino и подключать его через SPI используя только 3 сигнальных провода.

Чтобы построить этот проект, требуются базовые знания электроники и пайки компонентов, а также некоторые знания по использованию Arduino. Прошивка .

Здесь нужно спаять светодиоды вместе, используя длинные ножки светодиодов. Вы можете использовать любой размер и цвет LED, но длина ноги (более 23 мм) должна быть достаточной, чтобы согнуть и спаять их между собой. Светодиоды расположены в виде матрицы 8х8, где катоды спаяны между собой для строк, а для столбцов - аноды.

Драйвер MAX7219 управляет динамической индикацией светодиодной матрицы. При проектировании, каждая светодиодная матрица 8х8 будет опираться на схему, используя следующие компоненты:

  • 1 х MAX7219
  • 1 х 10 мкф 16В электролитический конденсатор
  • 1 х 0.1 UF керамический конденсатор
  • 1 х 12 кОм резистор (0,25 ВТ)
  • 1 х 24-контактное гнездо DIP IC

Обратите внимание, что вам может понадобиться выбрать другое значение резистора для работы с LED, что будете использовать. Этот резистор ограничивает максимальный ток на MAX7219, который на выходе будет подаваться на светодиоды.

А это видео показывает наглядно, как происходит монтаж светодиодной матрицы, электронной платы управления и простой тест, чтобы запустить её с помощью популярной платы Ардуино UNO/Nano.


Одним из важных достоинств данного преобразователя - он практически не нуждается в настройке, вся настройка сводится к подбору частотозадающего конденсатора микросхемы, им настраивают на нужную частоту, при увеличении емкости этого конденсатора частота уменьшается, при увеличении-повышается.

После того, как я изготовил матрицу 8х10, ко мне обратилось множество людей с просьбой создать матрицу большего размера, а также обеспечить запись данных в матрицу с помощью ПК. Поэтому в один прекрасный день я собрал светодиоды, которые остались после изготовления светодиодного куба, и решил все-таки сделать матрицу большего размера с учетом требований, о которых меня просили коллеги.

Ну, и чего же вы ждете? Берите светодиоды и паяльник, потому, что мы сейчас вместе будет делать светодиодную матрицу 24х6!

Шаг 1: Сбор всего необходимого

Для данного проекта вам потребуется базовый набор инструментов: паяльник, припой, щипцы, немного проволоки, кусачки, инструмент для снятия изоляции провода, а также приспособления для демонтажа, если они вам необходимы.

Для изготовления матрицы необходимо:
1. 144 светодиода
2. 24 резистора (номинал определяется по типу светодиодов, в моем случае 91 Ом)
3. Десятичный счетчик 4017
4. 6 резисторов номиналом 1 кОм
5. 6 транзисторов 2N3904
6. Длинная макетная плата
7. Arduino
8. 3 x 74HC595 регистра сдвига
10. Несколько штыревых разъемов

Шаг 2: Как это работает?

Идея работы светодиодной матрицы заключается в следующем: обычно информация разбивается на небольшие части, которые затем передаются одна за другой. Таким способом вы может сэкономить множество выводов на Arduino и сделать вашу программу достаточно простой.

Теперь пришло время задействовать 3 сдвиговых регистра, которые умножают несколько выходов и позволяют сэкономить множество выводов arduino.

Каждый сдвиговый регистр имеет 8 выходов и вам нужно только 3 вывода arduino для контроля почти неограниченного числа сдвиговых регистров.

Мы также будем использовать десятичный счетчик 4017 для сканирования рядов. С помощью него можно сканировать до 10 рядов, поскольку у вас есть только 10 выходов, однако для контроля их необходимо всего лишь 2 вывода.

4017 - это очень полезная микросхема. Ознакомиться с ее работой можно по сноске

Как я сказал ранее, сканирование выполняется с помощью десятичного счетчика 4017, посредством подсоединения одного ряда к земле за один раз и пересылки данных через сдвиговые резисторы в колонки.

Шаг 3: Схемное решение

Единственными элементами, которые я не указал на схеме, являются резисторы ограничения тока, поскольку их номинал зависит от типа используемых светодиодов. Поэтому их величину вам необходимо вычислить самостоятельно.

Для расчета величин 24 резисторов перейдите по следующей ссылке: .

Сначала необходимо посмотреть спецификацию светодиодов, чтобы узнать прямое напряжение и прямой ток. Эту информацию можно узнать у продавца. Схема работает от напряжения 5В. Следовательно, вам необходим источник питания напряжением 5В.

Загрузите оригинальный файл, чтобы более подробно изучить схему (нажмите на схему для увеличения изображения).

Шаг 4: Пайка светодиодов

Пайка 144 светодиодов для создания матрицы может оказать трудной задачей, если вы не знаете наверняка, как это сделать.

Последний раз я паял матрицу, используя много проволочных джамперов, которые очень тяжело припаивались. Поэтому в этот раз я более творчески подошел к данной проблеме.

Вам необходимо согнуть вниз положительный вывод светодиода по направлению к другим выводам и сделать ряд, затем отрезать неиспользуемую часть вывода, и попытаться сделать эти соединения низкими, насколько это возможно. Далее аналогично выполнить эту процедуру для всех положительных выводов.

Теперь отрицательные выводы соединены в колонку и их пайка затруднена из-за положительного ряда на их пути. Поэтому вам необходимо согнуть отрицательный вывод на 90 градусов, затем сделать мостик над положительным рядом к следующему отрицательному выводу и так далее для остальных светодиодов.

Я не стану объяснять, как припаивать сдвиговые регистры и остальные компоненты, поскольку у каждого есть свой стиль и методы работы.

Шаг 5: Программирование матрицы

Вот мы и подошли к последнему этапу нашего проекта – программированию матрицы.

До этого я уже написал две программы, которые имеют много общего.

Я добавил программу, которая получает слово или предложение от последовательного монитора IDE arduino и отображает его на матрице. Код программы достаточно простой и не претендует на лучший в мире, но он действительно работает. Вы можете написать свой код или изменить мой на свое усмотрение.

Я приложил файл в формате excel, чтобы вы смогли создать свои собственные знаки и символы.

Вот как это работает:

Создайте требуемый символ пиксель за пикселем (не беспокойтесь, это очень легко) и скопируйте выходную строку следующим образом - #define {OUTPUT LINE}

В дальнейшем я планирую добавить код для анимации, когда у меня появится больше времени.

Шаг 6: Устройство готово!

Поздравляю! Вы самостоятельно сделали матрицу a 24x6 и теперь можете оперативно выводить на нее все, что вам нужно.

Теперь вы можете протестировать матрицу, придумать новые программы или улучшить интерфейс.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Плата Arduino

Arduino Uno

1 В блокнот
U1-U3 Сдвиговый регистр

CD74HC595

3 В блокнот
U4 Специальная логика

CD4017B

1 K561ИЕ8 В блокнот
Q1-Q6 Биполярный транзистор

2N3904

6 В блокнот
Резистор
8 год назад

Заходите в наш раздел DIY - http://www.chipdip.ru/catalog-show/just-do-it/
Подписывайтесь на наши группы:
VK - http://vk.com/chipidip
FB - https://www.facebook.com/chipidip
Insta - https://www.instagram.com/chipidip/
Instructables http://www.instructables.com/member/ChipiDip/*
Если вам вдруг потребовалась небольшая светодиодная матрица нестандартного размера или формы, то вы всегда сможете собрать её собственными руками, используя для этого макетную плату, светодиоды и токоограничивающие элементы.Для примера изготовим матрицу размером 10 на 10 из ультрафиолетовых светодиодов, получив, таким образом, детектор подлинности денег. Используем для этого макетную плату ECI производства velleman, 100 светодиодов и сто резисторов. Зачем столько резисторов? Для питания мы будем использовать напряжение 5 вольт, а потому нам понадобятся резисторы в 470 Ом, чтобы задать необходимый ток в 20 миллиампер через каждый светодиод. Мы пойдём по пути наименьшего сопротивления, и просто соединим все светодиоды параллельно, но при таком соединении необходимо, чтобы каждый светодиод имел свой токоограничивающий резистор. Сначала припаяем на плату светодиоды, для удобства закрепив каждую, состоящую из них линию скотчем, что позволит перевернуть плату и быстро запаять их все сразу. После этого припаяем резисторы, так же предварительно закрепив их скотчем, и, наконец, создадим недостающие шины питания.Теперь подаём на нашу матрицу питание, и проверяем, чтобы все светодиоды при этом горят. Осталось только установить её в корпус и получить законченное устройство. Таким же образом можно изготовить светодиодные матрица различных цветов для светомузыки, белые для освещения или инфракрасные для камер ночного видения.

9 год назад

Телеканал "Санкт-Петербург". Программа "Как это работает". Журналист - ведущий: Кирилл Пищальников; операторы: Александр Чудин, Андрей Жохов, Дмитрий Емельянов; режиссер - Софья Иофа, монтаж - Андрей Алексеев, продюсеры:- Анна Агеева, Анна Тятте; редактор - Родион Чепель, руководитель проекта - Михаил Бергарт, видеоинженеры: Шамиль Фабриков, Юрий Степанов.

8 год назад

Очень двойственное состояние разума и души, с одной стороны очень горд за таких ЛЮДЕЙ, да еще земляк., а с другой стороны очень стыдно за чиновников и нашу власть, которая гнобит в прямом смысле вот таких ЛЮДЕЙ, не давая им и его технологиям развиваться. При этом содержат бессмысленные, бесчисленные конструкторские бюро, от которых эффективность 0

8 год назад

This is one of our lates projects. For schematics, layouts, and code see our project page: http://www.solderlab.de/index.php/led-projects/rgb-globe Best regards, Pepe PS: There is a small typo at the very beginning of the clip: It should be "2 PCBs" instread of "3".

8 год назад

Подписывайтесь на нашу группу Вконтакте - http://vk.com/chipidip, и Facebook - https://www.facebook.com/chipidip * Во всем мире идет активный поиск альтернативных экологически чистых источников энергии. В связи с этим, очень актуальным становится использование термоэлектрических модулей для генерирования электроэнергии. Термоэлектрические генераторные модули являются альтернативным экологически чистым источником электрической энергии, позволяющими обеспечивать с одного модуля при разности температур 100 °С генерацию электрической энергии мощностью до 10 Вт при напряжении постоянного тока до 6 В. Для обозначения термогенераторных модулей используется универсальное сокращение вида: ТGM-N-C-h, где: ТGM - сокращенное обозначение изделия - термоэлектрический генераторный модуль; N - количество термоэлектрических пар в модуле; С - длина ребра основания термоэлектрического элемента (в миллиметрах); h - высота термоэлектрического элемента (в миллиметрах). Например, в данном модуле TGM-127-1.0-2.5: 127 термоэлектрических пар (254 термоэлектрических элементов), каждый элемент имеет поперечное сечение 1,0х1,0 мм и высоту 2,5 мм. Основные области применения генераторных модулей: утилизация бросового тепла на транспортных установках (автомобилях, судах); автономное обеспечение энергией электронных блоков для водяных котлов и мусоросжигательных установок; катодная защита газовых трубопроводов; преобразование тепла природных источников - геотермальные воды и т.п. в электрическую энергию; автономное питание маломощных электрических устройств.

6 год назад

В этом видео показан процесс диагностики и ремонта материнской платы ASUS с распространенной проблемой для всех производителей плат и видеокарт, а именно короткое замыкание (КЗ) в системе питания процессора или GPU. В видео показан процесс прозвонки короткого замыкания, поиска неисправного транзистора (MOSFET) и процесс замены полевика на рабочий. Результаты ремонта в видео:) Лайк и подписка на канал приветствуются, они повышают наш моральный дух:) Подписка на канал: http://www.youtube.com/subscription_center?add_user=1servicecore Помощь по ремонту техники ВКонтакте: http://vk.com/club54940932 Сайт нашего сервисного центра: http://service-core.com.ua/

5 год назад

Статья http://vip-cxema.org/index.php/home/svetodiody/237-led-lampa-svoimi-rukami (плату можно скачать там же) все вопросы задавайте на форуме (регистрация не нужна) http://forum.vip-cxema.org/index.php?/forum/19-voprosy-i-otvety/ Наши сайты http://vip-cxema.org/ http://x-shoker.ru/ Официальная группа канала https://vk.com/club79283215 Группа vip-cxema.org http://vk.com/club54960228 Группа x-shoker.ru https://vk.com/public51079754 E-mail [email protected] Мой профиль VK https://vk.com/akakasyan Поддержать проекты webmoney R392842219424 Z416312694449 Яндекс.Деньги 410012993641116

3 год назад

Лучший курс для начинающих электронщиков: https://diodov.net/moi-kursy/ Расчет резистора для светодиода. Рассчитать сопротивление резистора для любого светодиода довольно просто. В начале необходимо определить величину напряжения, которое подается на светодиод. Далее по справочнику или даташиту узнать номинальный ток светодиода и номинальное напряжение светодиода. Вначале надо определить сколько напряжения нужно погаситься на резисторе. Оно равно разности напряжений источника питания и светодиода. Дальше необходимо выполнить расчет сопротивления гасящего резистора. Для этого напряжение на этом резисторе делим на номинальный ток светодиода. Последним пунктом нужно рассчитать мощность рассеяния резистора. Она прямопропорциональна квадрату напряжения этого резистора и обратнопропорциональна сопротивлению. Как видно из приведенного достаточно знать всего лишь три формулы. С помощью них можно легко и быстро выполнить расчет резистора для светодиода любого типа при любом входном напряжении без применения различных онлайн калькуляторов. Программирование микроконтроллеров с нуля: https://www.youtube.com/channel/UCByG5fr-hWOMKlb7DqyQQ9Q Получить высокую СКИДКУ на покупку ВСЕХ товаров: http://ali.pub/3mwkwb Набор резисторов 600 штук, 30 номиналов по 20 штук: http://ali.pub/3muaey Набор светодиодов разных цветов 300 штук: http://ali.pub/3mubp1 Здесь можно купить хорошие мультиметры: 1. Мультиметр RM113D http://ali.pub/3mn1ru 2. Мультиметр RM409B http://ali.pub/3mn432 3. Мультиметр BSIDE ADMS7 http://ali.pub/3mn5rx 4. Мультиметр RM101 http://ali.pub/3mn6pd 5. Мультиметр AN8009 http://ali.pub/3mn7z2 6. Мультиметр DT830B http://ali.pub/3mn8qo #РасчетСопротивления #Светодиод #РасчетРезистора

В последние годы получили широкое распространение в наружной рекламе и различных информационных табло светодиодные матрицы. Достаточно яркие, динамичные - они прекрасно привлекают внимание и не слепнут в солнечный день. Каждый из вас видит их на улицах вашего города ежедневно.
Конечно же, их распространению поспособствовала низкая цена (за счёт китайских производителей) и простота сборки экрана.

Но что если попробовать применить подобные матрицы в своих устройствах на микроконтроллерах? Какой интерфейс обмена и логика вывода у этих матриц?
Попробуем с этим всем разобраться.

Китайцы предлагают как сами матрицы разных размеров и с разным разрешением, так и контроллеры для вывода на них изображений с различными несложными эффектами, а также всю необходимую фурнитуру, соединительные кабели, рамы.
Матрицы встречаются как одноцветные (белые, желтые, красные, зеленые, синие), так и 3-цветные (RGB). Обозначение модели матрицы выглядит обычно так Pxx или PHxx, где xx - число, указывающее расстояние между пикселями в миллиметрах. В моём случае это P10. Кроме того, матрицы некоторых типоразмеров бывают не только прямоугольными, но и квадратными.

Возможные варианты типоразмеров матриц



Итак, имеем белую матрицу 32x16 точек с размерами 320x160мм и, соответственно, межпиксельным расстоянием в 10 мм. Давайте рассмотрим её поближе.
Вид спереди:

Вам тоже показалось, что светодиоды какие-то овальные? Вам не показалось…


Над светодиодами сделан небольшой козырёк, который не даёт солнечному свету засвечивать светодиоды.

Вид спереди со снятой пластиковой маской



Переворачиваем матрицу и видим плату:


На плате кучка микросхем логики. Давайте разберёмся, что это за микросхемы:
1. 1 x SM74HC245D - неинвертирующий буфер
2. 1 x SM74HC04 - 6-канальный инвертор
3. 1 x SM74HC138D - 8-битный дешифратор
4. 4 x APM4953 - сборка из 2 P-канальных MOSFET
5. 16 x 74HC595D - сдвиговый регистр с защёлкой
Два 16-пиновых разъёма - интерфейсные, один из них входной (к нему подключается контроллер экрана), а второй - выходной (к нему подключается следующая матрица в цепочке). Стрелка на плате направлена от входного разъёма к выходному.
Питание подаётся на клеммы в центре платы. Напряжение питания - 5В, максимальный ток (когда включены все светодиодны матрицы) - 2А (для белой матрицы).

Вся изложенная выше информация, а также демонстрация работы матрицы в видео ниже. В нём я с 13:04 по 15:00 говорю про зависимость яркости экрана от кол-ва матриц. Это из-за ошибки в алгоритме. Ошибка исправлена и теперь данные загружаются до отключения экрана.

Также буду рад вас видеть на моём youtube-канале , где я ещё много всякой всячины подключаю к микроконтроллерам.

Всем спасибо за внимание!



Понравилась статья? Поделитесь ей