Контакты

Увеличиваем ток (ампераж) блока питания. Как повысить силу электрического тока

Изредка нужно увеличить силу происходящего в электрической цепи тока . В данной статье будут рассмотрены основные методы увеличения силы тока без применения трудных устройств.

Вам понадобится

  • Амперметр

Инструкция

1. Согласно закону Ома для электрических цепей непрерывного тока:U=IR, где:U – величина подаваемого на электрическую цепь напряжения,R – полное сопротивление электрической цепи,I – величина происходящего по электрической цепи тока,для определения силы тока надобно поделить напряжение, подводимое к цепи на ее полное сопротивление. I=U/RСоответственно, для того дабы увеличить силу тока, дозволено увеличить подаваемое на вход электрической цепи напряжение либо уменьшить ее сопротивление.Сила тока увеличится, если увеличить напряжение. Увеличение тока при этом будет пропорционально возрастанию напряжения. Скажем, если цепь сопротивлением 10 Ом была подключена к стандартному элементу питания напряжением 1,5 Вольта, то происходящий по ней ток составлял:1,5/10=0,15 А (Ампер). При подключении к этой цепи еще одного элемента питания напряжением 1,5 В всеобщее напряжение станет 3 В, а происходящий по электрической цепи ток повысится до 0,3 А.Подключение осуществляется «ступенчато, то есть плюс одного элемента питания присоединяется к минусу иного. Таким образом, объединив ступенчато довольное число источников питания, дозволено получить нужное напряжение и обеспечить протекание тока требуемой силы. Объединенные в одну цепь несколько источников напряжения именуются батареей элементов. В быту такие конструкции обыкновенно называют «батарейками (даже если источник питания состоит каждого из одного элемента).Впрочем на практике возрастание силы тока может несколько отличаться от расчетного (пропорционального увеличению напряжения). В основном это связано с дополнительным нагревом проводников цепи, протекающим при увеличении проходящего по ним тока. При этом, как водится, происходит увеличение сопротивления цепи, что приводит к снижению силы тока.Помимо того, увеличение нагрузки на электрическую цепь может привести к ее «перегоранию либо даже возгоранию. Исключительно внимательным надобно быть при эксплуатации электробытовых приборов, которые могут трудиться лишь при фиксированном напряжении.

2. Если уменьшить полное сопротивление электрической цепи, то сила тока также увеличится. Согласно закону Ома увеличение силы тока будет пропорционально уменьшению сопротивления. Скажем, если напряжение источника питания составляло 1,5 В, а сопротивление цепи было 10 Ом, то по такой цепи проходил электрический ток величиной 0,15 А. Если после этого сопротивление цепи уменьшить в два раза (сделать равным 5 Ом), то происходящий по цепи ток увеличится в два раза и составит 0,3 Ампера.Крайним случаем уменьшения сопротивления нагрузки является короткое замыкание, при котором сопротивление нагрузки фактически равно нулю. Безмерного тока при этом, безусловно, не появляется, потому что в цепи имеется внутреннее сопротивление источника питания. Больше существенного уменьшения сопротивления дозволено добиться, если крепко охладить проводник. На этом результате сверхпроводимости основано приобретение токов большой силы.

3. Для возрастания силы переменного тока применяются всевозможные электронные приборы, в основном – трансформаторы тока, применяемые, скажем, в сварочных агрегатах. Сила переменного тока возрастает также при понижении частоты (потому что в итоге поверхностного результата понижается энергичное сопротивление цепи).Если в цепи переменного тока присутствуют энергичные сопротивления, то сила тока увеличится при увеличении емкости конденсаторов и уменьшении индуктивности катушек (соленоидов). Если в цепи имеются только емкости (конденсаторы), то сила тока увеличится при увеличении частоты. Если же цепь состоит из катушек индуктивности, то сила тока увеличится при уменьшении частоты тока.

По закону Ома, возрастание тока в цепи допустимо при выполнении правда бы одного из 2-х условий: увеличение напряжения в цепи либо уменьшение ее сопротивления. В первом случае поменяйте источник тока на иной, с большей электродвижущей силой; во втором – подберите проводники с меньшим сопротивлением.

Вам понадобится

  • обычный тестер и таблицы для определения удельных сопротивлений веществ.

Инструкция

1. Согласно закону Ома, на участке цепи сила тока зависит от 2-х величин. Она прямо пропорциональна напряжению на этом участке и обратно пропорциональна его сопротивлению. Всеобщая связанность описывается уравнением, которое выводится непринужденно из закона Ома I=U*S/(?*l).

2. Соберите электрическую цепь, которая содержит источник тока , провода и покупатель электроэнергии. В качестве источника тока используйте выпрямитель с вероятностью регулировки ЭДС. Подключите цепь к такому источнику, заранее установив в нее тестер ступенчато покупателю, настроенный на измерение силы тока . Увеличивая ЭДС источника тока , снимайте показания с тестера, по которым дозволено сделать итог, что при увеличении напряжения на участке цепи сила тока в нем пропорционально увеличится.

3. 2-й метод увеличения силы тока – уменьшение сопротивления на участке цепи. Для этого по особой таблице определите удельное сопротивление данного участка. Дабы сделать это, заранее узнайте, из какого материала сделаны проводники. Для того дабы увеличить силу тока , установите проводники с меньшим удельным сопротивлением. Чем поменьше эта величина, тем огромнее сила тока на данном участке.

4. Если нет других проводников, измените размеры тех, которые имеются в наличии. Увеличьте площади их поперечного сечения, параллельно им установите такие же проводники. Если ток течет по одной жиле провода, параллельно установите несколько жил. Во сколько раз увеличится площадь сечения провода, во столько раз усилится ток. Если есть вероятность, укоротите используемые провода. Во сколько раз уменьшится длина проводников, во столько раз увеличиться сила тока .

5. Методы возрастания силы тока дозволено комбинировать. Скажем, если увеличить площадь поперечного сечения в 2 раза, уменьшить длину проводников в 1,5 раза, а ЭДС источника тока увеличить в 3 раза, получите возрастание силы тока вы 9 раз.

Слежения показывают, что если проводник с током разместить в магнитное поле, то он начнет двигаться. Это значит, что на него действует некая сила. Это и есть сила Ампера. От того что для ее появления нужно присутствие проводника, магнитного поля и электрического тока, метаморфоза параметров этих величин и дозволит увеличить силу Ампера.

Вам понадобится

  • – проводник;
  • – источник тока;
  • – магнит (непрерывный либо электро).

Инструкция

1. На проводник с током в магнитном поле действует сила, равная произведению магнитной индукции магнитного поля B, силы тока, происходящего по проводнику I, его длины l и синуса угла? между вектором магнитной индукции поля и направлением тока в проводнике F=B?I?l?sin(?).

2. Если угол между линиями магнитной индукции и направлением силы тока в проводнике острый либо тупой, сориентируйте проводник либо поле таким образом, дабы данный угол стал прямым, то есть между вектором магнитной индукции и током должен быть прямой угол, равный 90?. Тогда sin(?)=1, а это наивысшее значение для этой функции.

3. Увеличьте силу Ампера , действующую на проводник, увеличив значение магнитной индукции поля, в котором он размещен. Для этого возьмите больше сильный магнит. Используйте электромагнит, тот, что разрешает получить магнитное поле разной интенсивности. Увеличьте ток в его обмотке, и индуктивность магнитного поля начнет возрастать. Сила Ампера увеличится пропорционально магнитной индукции магнитного поля, скажем, увеличив ее 2 раза, получите увеличение силы тоже в 2 раза.

4. Сила Ампера зависит от силы тока в проводнике. Присоедините проводник к источнику тока с изменяемым ЭДС. Увеличьте силу тока в проводнике за счет увеличения напряжения на источнике тока, либо замените проводник на иной, с такими же геометрическими размерами, но с меньшим удельным сопротивлением. Скажем, замените алюминиевый проводник на медный. При этом у него должна быть такая же площадь поперечного сечения и длина. Увеличение силы Ампера будет прямо пропорционально увеличению силе тока в проводнике.

5. Для увеличения значения силы Ампера увеличьте длину проводника, тот, что находится в магнитном поле. При этом неукоснительно рассматривайте, что при этом пропорционально уменьшится сила тока, следственно примитивное удлинение результата не даст, единовременно доведите значение силы тока в проводнике до начального, увеличивая напряжение на источнике.

Видео по теме

Видео по теме

Напряжение и сила тока - две основных величины в электричестве. Кроме них выделяют и ряд других величин: заряд, напряженность магнитного поля, напряженность электрического поля, магнитная индукция и другие. Практикующему электрику или электронщику в повседневной работе чаще всего приходится оперировать именно напряжением и током - Вольтами и Амперами. В этой статье мы расскажем именно о напряжении, о том, что это такое и как с ним работать.

Определение физической величины

Напряжение это разность потенциалов между двумя точками, характеризует выполненную работу электрического поля по переносу заряда из первой точки во вторую. Измеряется напряжение в Вольтах. Значит, напряжение может присутствовать только между двумя точками пространства. Следовательно, измерить напряжение в одной точке нельзя.

Потенциал обозначается буквой "Ф", а напряжение буквой "U". Если выразить через разность потенциалов, напряжение равно:

Если выразить через работу, тогда:

где A - работа, q - заряд.

Измерение напряжения

Напряжение измеряется с помощью вольтметра. Щупы вольтметра подключают на две точки напряжение, между которыми нас интересует, или на выводы детали, падение напряжения на которой мы хотим измерить. При этом любое подключение к схеме может влиять на её работу. Это значит, что при добавлении параллельно элементу какой-либо нагрузки ток в цепи изменить и напряжение на элементе измениться по закону Ома.

Вывод:

Вольтметр должен обладать максимально высоким входным сопротивлением, чтобы при его подключении итоговое сопротивление на измеряемом участке оставалось практически неизменным. Сопротивление вольтметра должно стремиться к бесконечности, и чем оно больше, тем большая достоверность показаний.

На точность измерений (класс точности) влияет целый ряд параметров. Для стрелочных приборов - это и точность градуировки измерительной шкалы, конструктивные особенности подвеса стрелки, качество и целостность электромагнитной катушки, состояние возвратных пружин, точность подбора шунта и прочее.

Для цифровых приборов - в основном точность подбора резисторов в измерительном делителе напряжения, разрядность АЦП (чем больше, тем точнее), качество измерительных щупов.

Для измерения постоянного напряжения с помощью цифрового прибора (например, ), как правило, не имеет значения правильность подключения щупов к измеряемой цепи. Если вы подключите положительный щуп к точке с более отрицательным потенциалом, чем у точки, к которой подключен отрицательный щуп - то на дисплее перед результатом измерения появится знак "-".

А вот если вы меряете стрелочным прибором нужно быть внимательным, При неправильном подсоединении щупов стрелка начнет отклоняться в сторону нуля, упрется в ограничитель. При измерении напряжений близких к пределу измерений или больше она может заклинить или погнуться, после чего о точности и дальнейшей работе этого прибора говорить не приходится.

Для большинства измерений в быту и в электронике на любительском уровне достаточно и вольтметра встроенного в мультиметры типа DT-830 и подобных.

Чем больше измеряемые значения - тем ниже требования к точности, ведь если вы измеряете доли вольта и у вас погрешность в 0.1В - это существенно исказит картину, а если вы измеряете сотни или тысяч вольт, то погрешность и в 5 вольт не сыграет существенной роли.

Что делать если напряжение не подходит для питания нагрузки

Для питания каждого конкретного устройства или аппарата нужно подать напряжение определенной величины, но случается, так что имеющийся у вас источник питания не подходит и выдает низкое или слишком высокое напряжение. Решается эта проблема разными способами, в зависимости от требуемой мощности, напряжения и силы тока.

Как понизить напряжение сопротивлением?

Сопротивление ограничивает ток и при его протекании падает напряжение на сопротивление (токоограничивающий резистор). Такой способ позволяет понизить напряжение для питания маломощных устройств с токами потребления в десятки, максимум сотни миллиампер.

Примером такого питания можно выделить включение светодиода в сеть постоянного тока 12 (например, бортовая сеть автомобиля до 14.7 Вольт). Тогда, если светодиод рассчитан на питание от 3.3 В, током в 20 мА, нужен резистор R:

R=(14.7-3.3)/0.02)= 570 Ом

Но резисторы отличаются по максимальной рассеиваемой мощности:

P=(14.7-3.3)*0.02=0.228 Вт

Ближайший по номиналу в большую сторону - резистор на 0.25 Вт.

Именно рассеиваемая мощность и накладывает ограничение на такой способ питания, обычно не превышает 5-10 Вт. Получается, что если нужно погасить большое напряжение или запитать таким образом нагрузку мощнее, придется ставить несколько резисторов т.к. мощности одного не хватит и ее можно распределить между несколькими.

Способ снижения напряжения резистором работает и в цепях постоянного тока и в цепях переменного тока.

Недостаток - выходное напряжение ничем нестабилизировано и при увеличении и снижении тока оно изменяется пропорционально номиналу резистора.

Как понизить переменное напряжение дросселем или конденсатором?

Если речь вести только о переменном токе, то можно использовать реактивное сопротивление. Реактивное сопротивление есть только в цепях переменного тока, это связно с особенностями накопления энергии в конденсаторах и катушках индуктивности и законами коммутации.

Дроссель и конденсатор в переменном токе могут быть использованы в роли балластного сопротивления.

Реактивное сопротивление дросселя (и любого индуктивного элемента) зависит от частоты переменного тока (для бытовой электросети 50 Гц) и индуктивности, оно рассчитывается по формуле:

где ω - угловая частота в рад/с, L-индуктивность, 2пи - необходимо для перевода угловой частоты в обычную, f - частота напряжения в Гц.

Реактивное сопротивление конденсатора зависит от его емкости (чем меньше С, тем больше сопротивление) и частоты тока в цепи (чем больше частота, тем меньше сопротивление). Его можно рассчитать так:

Пример использования индуктивного сопротивление - это питание люминесцентных ламп освещения, ДРЛ ламп и ДНаТ. Дроссель ограничивает ток через лампу, в ЛЛ и ДНаТ лампах он используется в паре со стартером или импульсным зажигающем устройством (пусковое реле) для формирования всплеска высокого напряжения включающего лампу. Это связано с природой и принципом работы таких светильников.

А конденсатор используют для питания маломощных устройств, его устанавливают последовательно с питаемой цепью. Такой блок питания называется "бестрансфоматорный блок питания с балластным (гасящим) конденсатором".

Очень часто встречают в качестве ограничителя тока заряда аккумуляторов (например, свинцовых) в носимых фонарях и маломощных радиоприемниках. Недостатки такой схемы очевидны - нет контроля уровня заряда аккумулятора, их выкипание, недозаряд, нестабильность напряжения.

Как понизить и стабилизировать напряжение постоянного тока

Чтобы добиться стабильного выходного напряжения можно использовать параметрические и линейные стабилизаторы. Часто их делают на отечественных микросхемах типа КРЕН или зарубежных типа L78xx, L79xx.

Линейный преобразователь LM317 позволяет стабилизировать любое значение напряжения, он регулируемый до 37В, вы можете сделать простейший регулируемый блок питания на его основе.

Если нужно незначительно снизить напряжение и стабилизировать его описанные ИМС не подойдут. Чтобы они работали должна быть разница порядка 2В и более. Для этого созданы LDO(low dropout)-стабилизаторы. Их отличие заключается в том, что для стабилизации выходного напряжение нужно, чтобы входное его превышало на величину от 1В. Пример такого стабилизатора AMS1117, выпускается в версиях от 1.2 до 5В, чаще всего используют версии на 5 и 3.3В, например и многом другом.

Конструкция всех вышеописанных линейных понижающих стабилизаторов последовательного типа имеет существенный недостаток - низкий КПД. Чем больше разница между входным и выходным напряжением - тем он ниже. Он просто «сжигает» лишнее напряжение, переводя его в тепло, а потери энергии равны:

Pпотерь = (Uвх-Uвых)*I

Компания AMTECH выпускает ШИМ аналоги преобразователей типа L78xx, они работают по принципу широтно-импульсной модуляции и их КПД равен всегда более 90%.

Они просто включают и выключают напряжение с частотой до 300 кГц (пульсации минимальны). А действующее напряжение стабилизируется на нужном уровне. А схема включения аналогичная линейным аналогам.

Как повысить постоянное напряжение?

Для повышения напряжения производят импульсные преобразователи напряжения. Они могут быть включены и по схеме повышения (boost), и понижения (buck), и по повышающе-понижающей (buck-boost) схеме. Давайте рассмотрим несколько представителей:

2. Плата на базе LM2577, работает на повышение и понижение выходного напряжения.

3. Плата преобразователь на FP6291, подходит для сборки 5 V источника питания, например powerbank. С помощью корректировке номиналов резисторов может перестраиваться на другие напряжения, как и любые другие подобные преобразователь - нужно корректировать цепи обратной связи.

Здесь всё подписано на плате - площадки для пайки входного - IN и выходного - OUT напряжения. Платы могут иметь регулировку выходного напряжения, а в некоторых случая и ограничения тока, что позволяет сделать простой и эффективный лабораторный блок питания. Большинство преобразователей, как линейных, так и импульсных имеют защиту от КЗ.

Как повысить переменное напряжение?

Для корректировки переменного напряжения используют два основных способа:

1. Автотрансформатор;

2. Трансформатор.

Автотрансформатор - это дроссель с одной обмоткой. Обмотка имеет отвод от определенного количества витков, так подключаясь между одним из концов обмотки и отводом, на концах обмотки вы получаете повышенное напряжение во столько раз, во сколько соотносится общее количество витков и количество витков до отвода.

Промышленностью выпускаются ЛАТРы - лабораторные автотрансформаторы, специальные электромеханические устройства для регулировки напряжения. Очень широко применение они нашли в разработке электронных устройств и ремонте источников питания. Регулировка достигается за счет скользящего щеточного контакта, к которому подключается питаемое устройство.

Недостатком таких устройств является отсутствие гальванической развязки. Это значит, что на выходных клеммах может запросто оказаться высокое напряжение, отсюда опасность поражения электрическим током.

Трансформатор - это классический способ изменения величины напряжения. Здесь есть гальваническая развязка от сети, что повышает безопасность таких установок. Величина напряжения на вторичной обмотке зависит от напряжений на первичной обмотки и коэффициента трансформации.

Uвт=Uперв*Kтр

Отдельный вид - это . Они работают на высоких частотах в десятки и сотни кГц. Используются в подавляющем большинстве импульсных блоках питания, например:

    Зарядное устройство вашего смартфона;

    Блок питания ноутбука;

    Блок питания компьютера.

За счет работы на большой частоте снижаются массогабаритные показатели, они в разы меньше чем у сетевых (50/60 Гц) трансформаторов, количество витков на обмотках и, как следствие, цена. Переход на импульсные блоки питания позволил уменьшить габариты и вес всей современной электроники, снизить её потребление за счет увеличения кпд (в импульсных схемах 70-98%).

В магазинах часто встречаются электронные траснформаторы, на их вход подаётся сетевое напряжение 220В, а на выходе например 12 В переменное высокочастотное, для использования в нагрузке которая питается от постоянного тока нужно дополнительно устанавливать на выход из высокоскоростных диодов.

Внутри находится импульсный трансформатор, транзисторные ключи, драйвер, или автогенераторная схема, как изображена ниже.

Достоинства - простота схемы, гальваническая развязка и малые размеры.

Недостатки - большинство моделей, что встречаются в продаже, имеют обратную связь по току, это значит что без нагрузки с минимальной мощностью (указано в спецификациях конкретного прибора) он просто не включится. Отдельные экземпляры оборудованы уже ОС по напряжению и работают на холостом ходу без проблем.

Используются чаще всего для питания 12В галогенных ламп, например точечные светильники подвесного потолка.

Заключение

Мы рассмотрели базовые сведения о напряжении, его измерении, а также регулировки. Современная элементная база и ассортимент готовых блоков и преобразователей позволяет реализовывать любые источники питания с необходимыми выходными характеристиками. Подробнее о каждом из способов можно написать отдельную статью, в пределах этой я постарался уместить базовые сведения, необходимые для быстрого подбора удобного для вас решения.

Бывает, что, собирая то или иное устройство, требуется определиться с выбором источника питания. Это чрезвычайно важно, когда устройствам необходим мощный блок питания. Приобрести железные трансформаторы с необходимыми характеристиками на сегодняшний день не составляет труда. Но они довольно дорогостоящие, а большие размеры и вес являются их главными недостатками. А сборка и наладка хороших импульсных блоков питания весьма сложная процедура. И многие не берутся за это.

Далее, вы узнаете о том, как собрать мощный и при этом несложный блок питания, взяв за основу конструкции электронный трансформатор. По большому счету, разговор пойдет об увеличении мощности таких трансформаторов.

Для переделки был взят 50-ваттный трансформатор.

Планировалось увеличить его мощность до 300 Вт. Этот трансформатор был приобретен в ближайшем магазине и стоил примерно 100 р.

Стандартная схема трансформатора выглядит следующим образом:

Трансформатор представляет собой обычный двухтактный полумостовой автогенераторный инвертор. Симметричный динистор является основным компонентом, осуществляющим запуск схемы, поскольку он подает первоначальный импульс.

В схеме задействованы 2 высоковольтных транзистора с обратной проводимостью.

Схема трансформатора до переделки содержит следующие компоненты:

  1. Транзисторы MJE13003.
  2. Конденсаторы 0,1 мкФ, 400 В.
  3. Трансформатор, имеющий 3 обмотки, две из которых являются задающими и имеют по 3 витка провода сечением 0,5 кв. мм. Еще одна в качестве обратной связи по току.
  4. Входной резистор (1 Ом) используется как предохранитель.
  5. Диодный мост.

Несмотря на отсутствие в этом варианте защиты от КЗ, электронный трансформатор работает без сбоев. Назначение устройства – это работа с пассивной нагрузкой (к примеру, офисные «галогенки»), поэтому стабилизация выходного напряжения отсутствует.

Что касается основного силового трансформатора, то его вторичная обмотка выдает около 12 В.

Теперь взгляните на схему трансформатора с увеличенной мощностью:

В ней стало даже меньше компонентов. Из первоначальной схемы были взяты трансформатор обратной связи, резистор, динистор и конденсатор.

Оставшиеся детали были извлечены из старых компьютерных БП, а это 2 транзистора, диодный мост и силовой трансформатор. Конденсаторы были приобретены отдельно.

Транзисторы не помешает заменить на более мощные (MJE13009 в корпусе TO220).

Диоды были заменены на готовую сборку (4 А, 600 В).

Также годятся и диодные мосты от 3 А, 400 В. Емкость должна составлять 2,2 мкФ, но можно и 1,5 мкФ.

Силовой трансформатор был изъят из БП формата ATX на 450 Вт. На нем были удалены все штатные обмотки и намотаны новые. Первичная обмотка была намотана тройным проводом 0,5 кв. мм в 3 слоя. Общее количество витков – 55. Необходимо следить за аккуратностью намотки, а также за ее плотностью. Каждый слой изолировался синей изолентой. Расчет трансформатора производился опытным путем, и была найдена золотая середина.

Вторичная обмотка наматывается из расчета 1 виток – 2 В, но это лишь в том случае если сердечник такой же, как в примере.

При первом включении обязательно использовать страховочную лампу накаливания на 40-60 Вт.

Стоит заметить, что в момент запуска лампа не вспыхнет, поскольку после выпрямителя нет сглаживающих электролитов. На выходе высокая частота, поэтому для того чтобы делать конкретные замеры, необходимо сначала выпрямить напряжение. Для этих целей был использован мощный сдвоенный диодный мост, собранный из диодов КД2997. Мост выдерживает токи до 30 А, если прикрепить к нему радиатор.

Вторичная обмотка предполагалась на 15 В, хотя на деле получилось чуть больше.

В качестве нагрузки было взято все, что оказалось под рукой. Это мощная лампа от кинопроектора на 400 Вт при напряжении в 30 В и 5 20-ваттных ламп на 12 В. Все нагрузки подключались параллельно.

Биометрический замок – Схема и сборка ЖК дисплея

Инструкция

Согласно закону Ома для электрических цепей постоянного тока:U=IR, где:U - величина подаваемого на электрическую цепь ,
R - полное сопротивление электрической цепи,
I - величина протекающего по электрической цепи тока,для определения силы тока нужно разделить напряжение, подводимое к цепи на ее полное сопротивление. I=U/RСоответственно, для того чтобы увеличить силу тока, можно увеличить подаваемое на вход электрической цепи напряжение или уменьшить ее сопротивление.Сила тока увеличится, если увеличить напряжение. Увеличение тока при этом будет повышению напряжения. Например, если цепь сопротивлением 10 Ом была подключена к стандартному элементу питания напряжением 1,5 Вольта, то протекающий по ней ток составлял:
1,5/10=0,15 А (Ампер). При подключении к этой цепи еще одного элемента питания напряжением 1,5 В общее напряжение станет 3 В, а протекающий по электрической цепи ток повысится до 0,3 А.
Подключение осуществляется «последовательно, то есть плюс одного элемента питания присоединяется к минусу другого. Таким образом, соединив последовательно достаточное количество источников питания, можно получить необходимое напряжение и обеспечить протекание тока нужной силы. Объединенные в одну цепь несколько источников напряжения батареей элементов. В быту такие конструкции обычно называют «батарейками (даже если питания всего из одного элемента).Однако на практике повышение силы тока может несколько отличаться от расчетного (пропорционального увеличению напряжения). В основном это связано с дополнительным нагревом проводников цепи, происходящим при увеличении проходящего по ним тока. При этом, как правило, происходит увеличение сопротивления цепи, что приводит к снижению силы тока.Кроме того, увеличение нагрузки на электрическую цепь может привести к ее «перегоранию или даже возгоранию. Особенно внимательным нужно быть при эксплуатации электробытовых приборов, которые могут работать лишь при фиксированном напряжении.

Если уменьшить полное сопротивление электрической цепи, то сила тока также увеличится. Согласно закону Ома увеличение силы тока будет пропорционально уменьшению сопротивления. Например, если напряжение источника питания составляло 1,5 В, а сопротивление цепи было 10 Ом, то по такой цепи проходил электрический ток величиной 0,15 А. Если затем сопротивление цепи уменьшить в два раза (сделать равным 5 Ом), то протекающий по цепи ток увеличится в два раза и составит 0,3 Ампера.Крайним случаем уменьшения сопротивления нагрузки является короткое замыкание, при котором сопротивление нагрузки практически равно нулю. Бесконечного тока при этом, конечно, не возникает, так как в цепи имеется внутреннее сопротивление источника питания. Более значительного уменьшения сопротивления можно добиться, если сильно охладить проводник. На этом эффекте сверхпроводимости основано получение токов огромной силы.

Для повышения силы переменного тока используются всевозможные электронные приборы, в основном - трансформаторы тока, применяемые, например, в сварочных аппаратах. Сила переменного тока повышается также при понижении частоты (так как вследствие поверхностного эффекта понижается активное сопротивление цепи).Если в цепи переменного тока присутствуют активные сопротивления, то сила тока увеличится при увеличении емкости конденсаторов и уменьшении индуктивности катушек (соленоидов). Если в цепи имеются только емкости (конденсаторы), то сила тока увеличится при увеличении частоты. Если же цепь состоит из катушек индуктивности, то сила тока увеличится при уменьшении частоты тока.



Понравилась статья? Поделитесь ей