Контакты

Повышающий DC-DC преобразователь. Принцип работы

Представляю обзор микромощного преобразователя напряжения, который мало на что сгодится.

Собран довольно неплохо, размер компактный 34х15х10мм




Заявлено:
Входное напряжение: 0.9-5В
С одной батареи АА выходной ток до 200мА
С двух батарей АА выходной ток 500 ~ 600мA
КПД до 96%
Реальная схема преобразователя


В глаза сразу бросается очень малая ёмкость входного конденсатора - всего-то 0.15мкФ. Обычно ставят больше раз в 100, видимо наивно рассчитывают на низкое внутреннее сопротивление батареек:) Ну поставили такой и бог с ним, при необходимости можно и поменять - себе сразу поставил 10мкФ. Снизу на фото валяется родной конденсатор.


Габариты дросселя также весьма невелики, что заставляет призадуматься насчёт правдивости заявленных характеристик
На входе преобразователя подключен красный светодиод, который начинает светиться при входном напряжении более 1,8В

Проверку проводил для следующих стабилизированных входных напряжений:
1,25В - напряжение Ni-Cd и Ni-MH аккумулятора
1,5В - напряжение одного гальванического элемента
3,0В - напряжение двух гальванических элементов
3,7В - напряжение Li-Ion аккумулятора
При этом нагружал преобразователь до падения напряжения до разумных 4,66В

Напряжение холостого хода 5,02В
- 0,70В - минимальное напряжение, при котором преобразователь начинает работать на холостом ходу. Светодиод при этом естественно не светится - напряжения не хватает.
- 1,25В ток холостого хода 0,025мА, максимальный выходной ток всего 60мА при напряжении 4,66В. Входной ток при этом 330мА, КПД около 68%. Светодиод при таком напряжении естественно не светится.


- 1,5В ток холостого хода 0,018мА, максимальный выходной ток 90мА при напряжении 4,66В. Входной ток при этом 360мА, КПД около 77%. Светодиод при таком напряжении естественно не светится


- 3,0В ток холостого хода 1,2мА (потребляет в основном светодиод), максимальный выходной ток 220мА при напряжении 4,66В. Входной ток при этом 465мА, КПД около 74%. Светодиод при таком напряжении светится нормально.


- 3,7В ток холостого хода 1,9мА (потребляет в основном светодиод), максимальный выходной ток 480мА при напряжении 4,66В. Входной ток при этом 840мА, КПД около 72%. Светодиод при таком напряжении светится нормально. Преобразователь начинает незначительно греться.


Для наглядности, свёл результаты в таблицу.


Дополнительно при входном напряжении 3,7В проверил зависимость КПД преобразования от тока нагрузки
50мА - КПД 85%
100мА - КПД 83%
150мА - КПД 82%
200мA - КПД 80%
300мA - КПД 75%
480мА - КПД 72%
Как несложно заметить, чем меньше нагрузка, тем выше КПД
До заявленных 96% сильно не дотягивает

Пульсации выходного напряжения при нагрузке 0,2А


Пульсации выходного напряжения при нагрузке 0,48А


Как нетрудно заметить, на максимальном токе амплитуда пульсаций очень велика и превышает 0,4В.
Скорее всего это происходит из-за выходного конденсатора небольшой ёмкости с высоким ESR (измерил 1,74Ом)
Рабочая частота преобразования около 80кГц
Запаял дополнительно керамику 20мкФ на выход преобразователя и получил снижение пульсаций при максимальном токе в 5 раз!




Вывод: преобразователь является весьма маломощным - это обязательно следует учитывать, выбирая его для питания Ваших устройств

Планирую купить +20 Добавить в избранное Обзор понравился +37 +69

Это устройство, призванное из напряжения одного уровня получить одно или несколько напряжений другого уровня. Иногда это бывает совершенно необходимо в нашей практике, например если мы конструируем устройство с низковольтным питанием от Li-Ion аккумулятора а в схеме этого устройства есть операционные усилители, требующие питания от двухполярного источника ∓ 15В. Или другой пример. Предположим нам нужно питать устройство на микроконтроллере с номинальным напряжением 5 вольт от литий ионного аккумулятора. В этом и подобных случаях на разработчику приходится использовать преобразователи постоянного напряжения.

В этой статье речь пойдет об импульсных преобразователях, имеющих очевидные преимущества, главное из которых - высокий КПД. Импульсные преобразователи нпаряжения - это очень широкий класс устройств. Они могут быть стабилизированные или нестабилизированные, с гальванической развязкой входа от выхода или без таковой. также преобразователи можно разделить на повышающие, понижающие и инвертирующие (например преобразователь, который, питаясь от напряжения +5В дает на выходе напряжение -5В)

Сейчас производители электронных компонентов выпускают большой ряд специальных микросхем для использования в приложениях DC-DC. Преобразователи, собранные на таких чипах имеют стабильные характеристики и высокую надежность. тем не менее импульсный преобразователь можно собрать и на обычных дискретных транзисторах. В этой статье приводятся несколько очень простых схем, которые можно использовать для решения несложных конструкторских задач.

Очень распространенная микросхема MAX232 служит для преобразования интерфейса UART в сигналы стандарта интерфейса RS232. В составе этой микросхемы уже есть встроенные преобразователи напряжения, которые мы можем использовать в своих корыстных целях.

Схема 1. Необычное использование микросхемы MAX232

такой преобразователь может обеспечить напряжение ∓ 9В при небольшом токе 5..8 мА. Такой преобразователь можно использовать для питания одного - двух операционных усилителей. основное преимущество - это простота. Целесообразно применять эту схему если что-то нужно сделать быстро, а под рукой нет ничего кроме микросхемы MAX232

Схема 2. Простой нестабилизированный преобразователь на двух транзисторах

Одна из самых простых схем. параметры такого преобразователя зависят от параметров используемых транзисторов, частоты преобразования и характеристик трансформатора. Схема, изображенная на рисунке работает на частоте около 50 кГц.


Трансформатор T1 - самодельный. Его можно намотать на ферритовом кольце из материала 2000НМ размером 10х6х4. первичная обмотка состоит из 20 витков с отводом от середины. Вторичная - 140 витков также с отводом от середины. Диаметр провода - не менее 0.2 мм. Транзисторы можно заменить на BC546 или другие. если к преобразователю не подключена нагрузка, он практически не потребляет ток от источника питания. В этом одно из его преимуществ (кроме простоты).

Схема 3. Простой нестабилизированный преобразователь - мультивибратор.

Следующая практическая схема - это двухтактный преобразователь на четырех транзисторах. сердцем схемы является обычный мультивибратор на двух транзисторах VT1 и VT2.


Драйверами для обмоток импульсного трансформатора служат транзисторы VT3 и VT4. Ко вторичной обмотке импульсного трансформатора подключен однополупериодный выпрямитель на диоде VD3. Пульсации выходного напряжения сглаживаются конденсатором C3. Выходное напряжение этого преобразователя можно менять в широких пределах изменением числа витков вторичной обмотки трансформатора.

Схема 4. Стабилизированный преобразователь на двух транзисторах.


Интересная схема, позволяющая питать от низковольтного источника (например от одного щелочного элемента 1.5 В.) например, небольшое устройство на микроконтроллере, требующем питания 5 В. Схема пытается поддерживать на выходе постоянное напряжение около 4.7 В. Сигнал обратной связи снимается с резистора R2 и подается на базу первого транзистора VT1. трансформатор Т1 можно намотать на ферритовом кольце диаметром 7 мм. Обе обмотки одинаковые, по 20 витков провода диаметром 0.3 мм. Можно намотать обмотки в два провода. При подключении необходимо учитывать начало и конец обмоток. Если ошибиться, то преобразователь не заработает. В этом случае поменяйте местам провода одной из обмоток. Катушка L1 - любой дроссель с индуктивностью в районе 10 мкГн. Дроссель можно использовать промышленный или намотать самому. Измерить индуктивность можно с помощью вот этого недорогого прибора . Дроссель совместно с конденсатором C3 сглаживает пульсации выходного напряжения.


Этот довольно качественный и удобный преобразователь построен на основе специализированной микросхемы от компании MAXIM. Можно применить для получения напряжения +12 вольт в устройстве, работающем от единственного источника питания с напряжением от 3 до 5 вольт. Дроссель L1 можно намотать на небольшом ферритовом кольце или на маленьком ферритовом стержне. Индуктивность катушек удобно измерять вот эти приборчиком . Схема обеспечивает на выходе ток 120 мА. Микросхему MAX734 .

Схема 5. Очень простой преобразователь на специализированном чипе.


Еще один DC-DC преобразователь с использованием микросхемы от MAXIM. Главное преимущество - исключительная простота и неприхотливость этой схемы. В устройстве всего 4 детали, включая микросхему МАХ631 . Главное и очевидное предназначение такого преобразователя - питание схемы, рассчитанной на 5 В. от источника с более низким напряжением 3.2 вольта. Например от одного Li-Ion аккумулятора.

Схема 6. Стабилизированный DC-DC преобразователь с двухполярным выходом 12 В


Эта очень полезная схема может пригодиться если в вашей конструкции есть только один источник питания 4..5 вольт, но вам необходимо использовать компоненты, требующие двухполярного питания. например операционные усилители (ОУ). Сердцем преобразователя является микросхема LM2587-12. Импульсный трансформатор можно реализовать на ферритовом кольце или на броневом сердечнике. Индуктивность первичной обмотки должна быть около 22 мкГ (измерить можно этим прибором), а отношение чисел витков первичной обмотки к вторичным = 1:2.5. То есть, например, индуктивность 22 мкГ на сердечнике который есть у вас в наличии получается при числе витков 50. Тогда число витков каждой из вторичных обмоток буде 2.5 * 50 = 125

Схема 7. Стабилизированный DC-DC преобразователь на два разных напряжения


Если в вашей конструкции есть цифровые микросхемы с напряжением питания как 5 так и 3.3 В то может пригодиться этот преобразователь. Схема работает от напряжения в районе 3 В и позволяет получить на выходе напряжения 3.3 и 5 В. Ток нагрузки по каждому выходу может достигать 150 мА. Как видим из схемы, в устройстве применяются 2 микросхемы MCP1252 от компании MICROCHIP



Схема 8. DC-DC преобразователь на два разных напряжения на микросхемах компании YCL Elektronics


DC-DC преобразователи на разные напряжения можно собрать на чипах, которые выпускает компания YCL Elektronics. В данном случает это микросхемы DC-102R в канале минус 5 В и DC-203R в канале +12 В. По выходу -5 В ток нагрузки может достигать 360 мА. По выходу +12 В ток меньше - 150 мА.

Схема 9. DC-DC повышающий преобразователь на MAX1724EZK33


Этот DC-DC преобразователь на микросхеме

Исходные данные: мотор-редуктор рабочее напряжение у которого 5 Вольт при токе 1 А и микроконтроллер ESP-8266 с чувствительным на изменение рабочим напряжением питания 3,3 Вольт и с пиковым током до 600 миллиампер. Все это необходимо учесть и запитать от одной аккумуляторной литий-ионной батареи 18650 напряжением 2,8 -4,2 Вольт.

Собираем схему приведенную ниже: аккумулятор литий-ионный 18650 напряжением 2К,8 -4,2 Вольт без внутренней схемы зарядного устройства -> присоединяем модуль на микросхеме TP4056 предназначенный для зарядки литий-ионных аккумуляторов с функцией ограничения разряда аккумулятора до 2,8 Вольт и защитой от короткого замыкания (не забываем что этот модуль запускается при включенном аккумуляторе и кратковременной подачи питания 5 Вольт на вход модуля от USB зарядного устройства, это позволяет не использовать выключатель питания, ток разряда в ждущем режиме не очень большой и при долгом не использования всего устройства оно само выключиться при падении напряжения на аккумуляторе ниже 2,8 Вольт)

К модулю TP4056 подключаем модуль на микросхеме MT3608 — повышающий DC-DC (постоянного в постоянный ток) стабилизатор и преобразователь напряжения с 2,8 -4,2 Вольт аккумулятора до стабильных 5 Вольт 2 Ампера — питания мотор-редуктора.

Параллельно к выходу модуля MT3608 подключаем понижающий DC-DC стабилизатор-преобразователь на микросхеме MP1584 EN предназначенный для стабильного питания 3,3 Вольта 1 Ампер микропроцессора ESP8266.

Стабильная работа ESP8266 очень зависит от стабильности напряжения питания. Перед подключением последовательно модулей DC-DC стабилизаторов-преобразователей не забудьте настроить переменными сопротивлениями нужное напряжение, поставьте конденсатор параллельно клеммам мотор-редуктора что бы тот не создавал высокочастотных помех работе микропроцессору ESP8266.

Как видим из показаний мультиметра при присоединении мотор-редуктора напряжение питания микроконтроллера ESP8266 НЕ ИЗМЕНИЛОСЬ!


Зачем нужен СТАБИЛИЗАТОР НАПРЯЖЕНИЯ. Как использовать стабилизаторы напряжения

Знакомство со стабилитронами, расчет параметрического стабилизатора; использование интегральных стабилизаторов; конструкция простого тестера стабилитронов и другое.

AMS1117 Технический паспорт

Наименование AMS1117
Kexin Промышленные
Описание Линейный регулятор напряжения DC-DC с малым внутренним падением напряжения, выход 800мА, 3.3В, SOT-223

С управляемым или фиксированным режимом регулирования

AMS1117 Технический паспорт PDF (datasheet) :

Характеристики:
— максимальная стабилизация при полной нагрузке по току;
— быстрая переходная характеристика;
— защита по выходу при превышении тока нагрузки;
— встроенная тепловая защита;
— низкий уровень шума
— регулируемое или фиксированное напряжение 1.5 Вольт, 1.8 Вольт, 2.5 Вольт, 1.9 Вольт, 3.3 Вольт, 5 Вольт.

RT9013 Технический паспорт

Наименование
Richtek технологии
Описание Стабилизатор-преобразователь на нагрузку с током потребления 500мА, с малым падением напряжения, низким уровенем собственных шумов, сверхбыстродействующий, с защитой выхода по току и от короткого замыкания, CMOS LDO .
RT9013 PDF Технический паспорт (datasheet) :

Общее описание
RT9013 представляет собой высокопроизводительный, 500mA LDO регулятор напряжения, с высоким PSRR и ультра-малым падением напряжения. Идеально подходит для портативных и беспроводных устройств с высокими требованиями к производительности и пространству размещения.Особенности:
Широкий диапазон входного рабочего напряжения: 2.2 Вольт — 5.5 Вольт с
малым падением напряжения: 250 мВ при нагрузке 500 мА.
Низкий уровень собственных шумов для применения .
Сверхбыстрая реакция на переходные процессы в нагрузке.
Термическое отключение и защита по току.
Необходим на выходе конденсатор 1 мкФ.
Наименование
Монолитные Power Systems
Описание 3А, 1.5MHz, 28В Step-Down конвертер
(datasheet) :

Image Info: MP1584
MP1584 представляет собой высокочастотный 1.5 мГц понижающий стабилизатор-преобразователь DC-DC (постоянный в постоянный) напряжения с интегрированным выходным МОП-транзистором. Он обеспечивает выходной ток 3A с текущим контролем стабильности, быстрым реагированием и легкой компенсацией напряжения.

Диапазон входного напряжения от 4.5 Вольт до 28 Вольт охватывает большинство понижающих приложений, в том числе в автомобильной сфере. 100 мкА оперативный ток покоя позволяет использовать модуль в спящем режиме от батарейного питания. Эффективность преобразования в широком диапазоне нагрузки достигается путем уменьшения частоты переключения при малой нагрузке, чтобы уменьшить потери при коммутации затвора выходного транзистора.

**Приобрести можно в магазине Your Cee

Наименование
Монолитные Power Systems
Описание 3A, от 4.75 Вольт до 23 Вольт, 340KHz, понижающий преобразователь
MP2307 Спецификация PDF (datasheet) :

Image Info: MP2307

MP2307 представляет собой монолитный синхронный понижающий стабилизатор-преобразователь DC-DC (постоянный в постоянный) . Устройство объединяет 100 миллионов МОП-транзисторов, которые обеспечивают 3A постоянного тока нагрузки в широком рабочем входном напряжении от 4.75 Вольт до 23 Вольт. Регулируемый плавный пуск предотвращает броски тока при включении/отключении, ток питания ниже 1 мкА. Это устройство, доступный в SOIC корпусе с 8 выводами, обеспечивает очень компактное решение системы с минимальной зависимостью от внешних компонентов.

1. Термостойкий 8-контактный SOIC корпус.

2. 3A — непрерывный выходной ток 4A — пиковый выходной ток.

3. Широкий диапазон рабочего входного напряжении от 4.75 Вольт до 23 Вольт.

*Приобрести можно в магазине Your Cee

LM2596 Технический паспорт

Наименование
Во-первых компонентов Международной
Описание Простой понижающий стабилизатор-преобразователь питания 3A с внутренней частотой 150 кГц
LM2596 Технический паспорт PDF (datasheet) :

ОБЩЕЕ ОПИСАНИЕ
Серия LM2596 регуляторов напряжения является монолитными интегральными микросхемами, которые обеспечивают все активные функции понижающего импульсного стабилизатора-преобразователя электропитания , способный управлять нагрузкой до 3A с отличной линейной регулировкой напряжения на нагрузке. Эти устройства доступны с фиксированными выходными стабилизированными напряжениями 3.3 Вольт, 5 Вольт, 12 Вольт, и с регулируемым выходным стабилизированным напряжением от 1.2 Вольт до 37 Вольт. Термическое отключение и защита по току.Внутренняя схема микросхемы:
Типичное подключение:

MC34063A Технический паспорт

Наименование MC34063A
Крыло Шинг International Group
Описание DC-DC управляемый преобразователь
MC34063A Технический паспорт PDF (datasheet) :

Повышающий DC-DC преобразователь 5-12 вольт, проще всего собрать на LM2577, которая обеспечивает выход 12V, используя входной сигнал 5V и максимальный ток нагрузки 800 мА. М\С LM2577 - это повышающий прямоходовый импульсный преобразователь. Она доступна в трех различных версиях выходного напряжения: 12 В, 15 В и регулируемая. Вот подробная документация .

Схема на ней требует минимального количества внешних компонентов, а также такие регуляторы экономически эффективным и простые в использовании. Другие особенности: встроенный генератор на фиксированной частоте 52 кГц, который не требует никаких внешних компонентов, мягкий режим запуска для снижения пускового тока и режим регулирования по току для улучшения отклонении входного напряжения и выходной переменной нагрузки.

Характеристики преобразователя на LM2577

  • Входное напряжение 5 В постоянного тока
  • Выходное 12 В постоянного тока
  • Нагрузочный ток 800 мА
  • Функция плавного пуска
  • Отключение при перегреве

Здесь применена регулируемая микросхема LM2577-adj . Для получения других выходных напряжений надо изменить величину резистора обратной связи R2 и R3. Выходное напряжение рассчитывается по формуле:

V Out = 1.23V (1+R2/R3)

В общем LM2577 стоит недорого, дроссель в этой схеме унифицированный - на 100 мкГн и предельный ток 1 А. Благодаря импульсной работе каких-то больших радиаторов для охлаждения не требуется - так что эту схему преобразователя можно смело рекомендовать для повторения. Особенно она пригодится в случаях, когда из USB выхода надо получить 12 вольт.

Сегодня мы рассмотрим несколько схем несложных, даже можно сказать - простых, импульсных преобразователей напряжения DC-DC (преобразователей постоянного напряжения одной величины, в постоянное напряжение другой величины)

Чем хороши импульсные преобразователи. Во-первых, они имеют высокий КПД, и во-вторых могут работать при входном напряжении ниже выходного. Импульсные преобразователи подразделяются на группы:

  • - понижающие, повышающие, инвертирующие;
  • - стабилизированные, нестабилизированные;
  • - гальванически изолированные, неизолированные;
  • - с узким и широким диапазоном входных напряжений.

Для изготовления самодельных импульсных преобразователей лучше всего использовать специализированные интегральные микросхемы - они проще в сборке и не капризны при настройке. Итак, приводим для ознакомления 14 схем на любой вкус:

Этот преобразователь работает на частоте 50 кГц, гальваническая изоляция обеспечивается трансформатором Т1, который наматывается на кольце К10х6х4,5 из феррита 2000НМ и содержит: первичная обмотка - 2х10 витков, вторичная обмотка - 2х70 витков провода ПЭВ-0,2. Транзисторы можно заменить на КТ501Б. Ток от батареи, при отсутствии нагрузки, практически не потребляется.

Трансформатор Т1 наматывается на ферритовом кольце диаметром 7 мм, и содержит две обмотки по 25 витков провода ПЭВ=0,3.


Двухтактный нестабилизированный преобразователь на основе мультивибратора (VТ1 и VТ2) и усилителя мощности (VТ3 и VТ4). Выходное напряжение подбирается количеством витков вторичной обмотки импульсного трансформатора Т1.

Преобразователь стабилизирующего типа на микросхеме MAX631 фирмы MAXIM. Частота генерации 40…50 кГц, накопительный элемент - дроссель L1.


Можно использовать одну из двух микросхем отдельно, например вторую, для умножения напряжения от двух аккумуляторов.

Типовая схема включения импульсного повышающего стабилизатора на микросхеме MAX1674 фирмы MAXIM. Работоспособность сохраняется при входном напряжении 1,1 вольта. КПД - 94%, ток нагрузки - до 200 мА.

Позволяет получать два разных стабилизированных напряжения с КПД 50…60% и током нагрузки до 150 мА в каждом канале. Конденсаторы С2 и С3 - накопители энергии.

8. Импульсный повышающий стабилизатор на микросхеме MAX1724EZK33 фирмы MAXIM

Типовая схема включения специализированной микросхемы фирмы MAXIM. Сохраняет работоспособность при входном напряжении 0,91 вольта, имеет малогабаритный SMD корпус и обеспечивает ток нагрузки до 150 мА при КПД - 90%.

Типовая схема включения импульсного понижающего стабилизатора на широкодоступной микросхеме фирмы TEXAS. Резистором R3 регулируется выходное напряжение в пределах +2,8…+5 вольт. Резистором R1 задается ток короткого замыкания, который вычисляется по формуле: Iкз(А)= 0,5/R1(Ом)

Интегральный инвертор напряжения, КПД - 98%.

Два изолированных преобразователя напряжения DA1 и DA2, включенных по “неизолированной” схеме с общей “землей”.

Индуктивность первичной обмотки трансформатора Т1 - 22 мкГн, отношение витков первичной обмотки к каждой вторичной - 1:2.5.

Типовая схема стабилизированного повышающего преобразователя на микросхеме фирмы MAXIM.



Понравилась статья? Поделитесь ей