Контакты

Что нужно для лазерной сигнализации. Лазерная сигнализация – простейшее решение проблемы защиты помещения

Альтернативой тепловым датчикам на современном рынке сигнализаций является ни что иное, как лазер. Подобные системы используются для охраны индустриальных, военных и банковских объектов.

В быту лазерная сигнализация пока не нашла широкого применения, однако, если есть растущие из нужного места руки и базовые навыки обращения с паяльником, можно самостоятельно сделать вполне работоспособный образец или заказать готовую модель.

Лазерная сигнализация – это специальное чувствительное устройство, простая схема которого основывается на взаимодействии лазерного луча и сирены. Пересекая лазерную «растяжку» срабатывает сигнализация, которую слышно в радиусе 100 метров . Она предназначена как для сигнала тревоги для охраны, так и для отпугивания преступников. Ещё существует смс-информирование или отправка голосового сообщения в качестве уведомления об опасности. Отметим, что редко используют лазерный сигнал из-за потери мощности и зависимости от метеоусловий.

Базовые блоки

Лазерный извещатель состоит из следующих элементов:

  • генератора;
  • блока питания;
  • лазера;
  • реле;
  • цифровой микросхемы;
  • фотоэлемента;
  • звуковой извещатель (для пущего эффекта может применяться и светодиодная лампочка).

Обычно устанавливаю такой агрегат ближе к полу на расстоянии в 25-35 см, чтобы особо невнимательные грабители либо не заметили его, либо не смогли свободно проползти под ним или перепрыгнуть.

Закрепляют лазер, блок питания и реле с одной стороны, а фотоэлемент крепится на другой стене так, чтобы луч попадал на линзу.

Когда охранная сигнализация данного типа задействована, луч проходит по прямой линии к фотоэлементу. Так как пучок света преодолевает большое расстояние и не рассеивается, то его можно отражать неопределённое количество раз при помощи обычных зеркальных поверхностей , направленных под определённым углом друг к другу. Это помогает создать запутанный лабиринт, пройти который, не задев такую «растяжку», практически невозможно.

Если вор-неудачник пересечёт луч, сигнал не поступает к фотоэлементу, возникает сопротивление и реле блокируется. Таким образом реле передает сигнал резистору, а последний - извещателю.

Сразу после нарушения в зоне активации лазер также прекращает работу , чтобы не задействовать фотоэлемент снова, иначе сигнал тревоги прервётся. Полностью выключить сигнализацию можно лишь отключив питание.

Чтобы сигнализация не срабатывала от обычных солнечных лучей или иных источников света фоторезистор имеет специальную изоляцию.

Схемы

На основе контроллера Arduino

Для сборки схемы понадобится детский лазер и фоторезистор.

На лазере есть кнопка, которая включает свечение. Вот пошаговая инструкция сборки настоящей, вполне работоспособной сигнализации.

  1. Разберите лазер, сняв насадку. Выньте батарейки и вытащите само устройство.
  2. Кнопку необходимо отпаять, после чего продеть в отверстие на корпусе провод и припаять его к кнопке.

Важно! Не допускайте перегрева контактов, все детали очень хрупкие.

  1. Соберите приборчик в обратном порядке.
  2. Фоторезистор необходимо поместить в закрытое пространство, чтобы исключить попадание лучей света (иначе не будет работать днём). Можно использовать коробок или тёмный пластиковый контейнер, укрепив изолентой.
  3. Фоторезистор монтируйте к контроллеру по приведёной схеме. Сопротивление резистора 10 кОм.
  4. Подключите контроллер к компьютеру и запустите среду Arduino IDE .
  5. Залейте следующий скетч

void setup()

Serial.begin(9600);

void loop()

Serial.println(analogRead(foto)); //Выводим на монитор последовательного порта значения с фоторезистора

delay(20);

  1. Установите датчик напротив лазера, добившись прямого попадания луча на фотоэлемент.
  2. В программаторе откройте “монитор последовательного порта” и отследите полученные значения. На их основе определите пороговую величину срабатывания сигнализации.
  3. Светодиод подключите к пину №5 контроллера и добавьте новый скетч.

#define foto 0 //Фотоэлемент подключен к пину 0 (аналоговый вход)

#define led 5 //светодиод подключен к 5 пину

void setup()

Serial.begin(9600);

pinMode(led, OUTPUT);

void loop()

if (analogRead(foto) < 930) //Значение меньше порогового

for (int i=0 ; i < 10 ; i++)

digitalWrite(led , HIGH);

delay(500);

digitalWrite(led , LOW);

delay(500);

else digitalWrite(led , LOW);

Итог. При прерывании луча значение сигнала на последовательном порте падает ниже пороговой величины. При этом контроллер выдаёт сигнал на светодиод, тот начинает мигать.

Смотрите видео демонстрацию работы устройства

Дальнейшее наращивание схемы и подключение дополнительных элементов проводите по вкусу. Отличный вариант – для получения сигнала на свой сотовый.

На тиристоре BT169

Для сборки потребуются следующие элементы.

  • тиристор BT169;
  • конденсатор;
  • резисторы 47k;
  • фоторезистор или LDR;
  • светодиод;
  • бытовой лазер;

Монтаж осуществляется согласно приведенной схеме.

Принцип действия аналогичен предыдущей модели – при прерывании луча фоторезистор блокирует схему. Тиристор работает как переключатель, подавая сигнал на звуковой сигнал или светодиод. Подробности монтажа и использования смотрите на ролике.

На микросхеме NE555

Необходимые элементы

  • piezo buzzer (пищалка);
  • резистор 750 Ом;
  • резистор 130 кОм;
  • микропереключатель;
  • фоторезистор;
  • микросхема интегрального таймера NE555.

Микросхема имеет широкий диапазон питающих напряжений: от 4.5 до 18 В, выходной ток достигает 200 мА. Сопротивление резисторов R1 и R2 рассчитывается в зависимости от напряжения питания.

Сборка по схеме не представляет особых затруднений. Следует учесть порядок выводов NE555, чтобы не сжечь микросхему.

За запуск отвечает вторая ножка, на неё нельзя подавать более 30% напряжения питания, за останов шестая ножка (не более 70% напряжения питания).

В остальном схема работает по классическому принципу – при отсутствие сигнала на фоторезисторе, повышается напряжение на шестой ножке, в результате подаётся питание на звуковой сигнал. Выключение с помощью микропереключателя.

Заключение

На основе простого механизма строится мощная и надёжная система охраны для предприятий и финансовых учреждений. Для применения в быту вы можете либо сами сделать систему защиты по своему вкусу, либо заказать готовый комплект в китайских интернет-магазинах, естественно, без всяких гарантий качества. Важный плюс – сравнительно небольшие энергозатраты делают лазерную сигнализацию

Лазерное излучение нашло широкое применение в профессиональных охранных системах. Но нам с радиолюбительской точки логики наиболее интересны лазерные указки красного свечения. Поскольку указка имеет малую мощность излучения, то она безопасна для людей и животных, однако не следует направлять лазерное излучение непосредственно в глаза это может спровоцировать опасное глазное заболевание.

Принцип работы лазерной сигнализации следующий: когда в зону действия луча попадает объект, лазер перестает освещать фотоприемник. Сопротивление последнего резко увеличивается и реле отключается. Контактами реле отключается и лазер. Это вариант самой простой схемы.

Когда лазерный луч воздействует на фоторезистор, то его сопротивление стремится к нулю, а когда лазер отключен, его сопротивление резко и намного увеличивается. Фоторезистор необходимо разместить в закрытом корпусе.

В роли лазера используется готовый модуль с красным излучателем от дешевой китайской указки. Лазерная головка подсоединена к источнику питания через сопротивление 5 ом. Зона активного луча от 10 до 100 метров.

Предлагаю к рассмотрению схему лазерной сигнализации, основа которой компаратор на операционном усилителе TL072. Опорное напряжение формируется делителем напряжения на сопротивлениях R2 и R3 поступает на третий вывод микросхемы TL072, а сравниваемое напряжение на второй вывод с делителя R1 и VD1.

В момент прерывания лазерного луча, напряжение на втором выводе компаратора резко уменьшается, относительно третьего вывода, в результате чего на выходе ОУ появляется сигнал, который может управлять сиреной или другим исполнительным устройством.

Сопротивление R4 нужно для защиты от самопроизвольного срабатывания, если на обоих входах ОУ равное напряжение. Емкость C1 защищает срабатывание устройства от кратковременного прерывания луча, например, от насекомых.

Корпус лазерной головки должен быть светонепроницаемым. Его можно склеить из черного полистирола. Во избежание боковой подсветки к "окну" фотодиода рекомендуется приклеить бленду. Ее можно изготовить в виде "колодца" квадратного сечения из того же полистирола. Фотоэлемент можно закрыть красным светофильтром он мало ослабит излучение лазера. Для защиты от сильных электрических помех головку помещаем в металлический экран.

Это схема была подробно описана в журнале радио №7 за 2002 год, скачать и ознакомится со статьей вы его можете щелкнув по зеленой стрелочке.

Эта схема работает как охранная система, и является датчиком пересечения злоумышленником лазерного луча. Схема состоит из двух основных частей: фотореле (VT1, VT2) и реле времени (VT3, VT4).


Если лазерный пучек попадает фоторезистор, то реле KV1 отключено, а при прерывание луча, реле сработает, своим контактом KV1.1 включит реле времени и опять вернется в начальное состояние. Реле времени работает по следующему алгоритму. В начальный момент, когда контакт KV1.1 разомкнут напряжение на конденсаторе C1 стремится к нулю, а транзисторы VT3 и VT4 закрыты, ток через обмотку реле KV2 не проходит и его контакты, разомкнуты. При срабатывании реле KV1 конденсатор C1 заряжается и сразу же начнет разряжаться через эмиттерный переход третьего транзистора и сопротивления R8, при этом транзисторы VT3 и VT4 открываются, реле KV2 включится и своими контактами подсоединит исполнительный механизм. По окончанию процесса разряда конденсатора схема возвращается в начальное состояние. Сопротивлением R6 можно регулировать временную задержку.

Эта схема световой сигнализации срабатывает при резком падении уровня освещения датчика, запуская при этом звуковой сигнал тревоги. Устройство не срабатывает при плавном изменении яркости. Чтобы увеличить ресурс батареи питания, звуковой сигнал звуковой сигнал тревоги звучит от одной до десяти секунд, время звучания можно регулировать с помощью построечного сопротивления R5.


В качестве источника света желательно использовать лазерное излучение, но в крайнем случае подойдет и обычное освещение, но схема будет работать гораздо хуже. Чувствительность схемы можно изменять сопротивлением R1. Датчик света является обычный фоторезистор, сопротивление которого минимально при освещении, и максимально при затемнении. Так как микросхема таймер 555 имеет малое энергопотребление, схема сигнализации в дежурном режиме потребляет около 0.5mA.

Этот практически простейший вариант состоит из двух цепей: цепи излучения и приема луча. В схему приемника входит электромагнитное реле для подсоединения внешней сигнализации.


Схема лазерного излучателя состоит из красного Laser светодиода с длиной волны 650 нм и мощностью 5 мВт. LD1 запитан от источника напряжением 5 В. Последовательно с ним подключены два вспомогательных элемента: полупроводниковый диод D1 (1N4007) и сопротивление R1 номиналом 62 Ом. LD1 можно позаимствовать из Laser указки.

Схема приемника состоит из фоторезистора, который управляет реле, с помощью тиристора T1 (BT169). D2 (1N4007) защищает схему от противо-ЭДС импульса катушки реле, когда тиристор T1 отключается.

Пример установки лазерной растяжки-сигнализации показан в левом углу рисунка выше.

В основе схемы применена также идея с лазерной головкой красного цвета из лазерной указки в роли источника света.


Для исключения возможности ложного срабатывания в схеме имеется временная задержка. При необходимости ее увеличения, надо добавить емкости C1 или увеличить значение переменных сопротивлений R2 и R3. Вместо таймера NE555 можно взять его отечественный аналог КР1006ВИ1. Для исключения попадания прямых солнечных лучей в фототранзистор, его желательно расположить в трубке подходящего диаметра в зависимости от корпуса фотоэлемента и длинной не менее 25 см. Торец закрываем прозрачным стеклом для защиты от разной живности. Внутреннюю поверхность трубки можно покрасить в темный цвет.

Рынок систем для защиты объектов от взломов и непредвиденных происшествий насыщен датчиками, которые способствуют установлению всестороннего контроля над жильем. Однако далеко не каждое устройство способно обеспечить надежную охрану, а подключение некачественного дешевого оборудования приводит к непредвиденным проблемам. Как альтернатива датчикам движения, применяется простая и безотказная лазерная сигнализация, которая срабатывает при попадании объекта в спектр луча.

Какой принцип работы сигнализации с лазерным лучом?

Сигнализации с лазерным лучом обычно покупают в готовом комплекте, но при желании их можно изготовить самостоятельно, не затрачивая много сил и средств. Весь принцип работы лазерной сигнализации связан со специальным инфракрасным лучом, который направляется под определенным углом к противоположной стене комнаты, где закреплен фотоэлемент.

Любой объект, попадающий в заданный спектр, создает преломление, способное подать сигнал на специальный извещатель. После подачи сообщения о нарушении, встроенный динамик оповестит жильцов или охрану о проникновении.

В комплект лазерного извещателя входят следующие конструкционные материалы:

  • Реле;
  • Простейшая микросхема от фонарика;
  • Фотоэлемент;
  • Блок питания;
  • Резистор;
  • Извещатель;
  • Генератор.

Благодаря тому, что лазерный светопоток не рассеивается и постоянно направлен в одну сторону, с помощью системы отражателей можно создать разнообразный рисунок, который невозможно обойти. В качестве отражателей применяют небольшие кусочки зеркал, расположенные под определенным углом в разных концах комнаты.

Процесс сборки элементов и деталей лазера

Принцип сборки состоит из последовательного припаивания отдельных элементов сигнализации к плате. В первую очередь требуется определиться с местом, где будет установлен лазерный сигнализатор и фотоэлемент. Чаще всего такие механизмы монтируют в нижней части комнаты на уровне 30 см от пола, что позволяет скрыть устройство от посторонних глаз.

На видео – эксперимент с лазерной сигнализацией:

Установленный лазер с одной стороны стены подсоединяется к реле и блоку питанию, а в противоположном месте, на расстоянии не более 10 м, крепится фотоэлемент с расчетом, что луч будет падать отвесно на линзу. При попадании объекта в спектр луча, фотоэлемент начинает нагреваться, реле передает сигнал резистору, а последний – извещателю.

Оповещатель выступает в роли отпугивателя, издавая сигнал мощностью до 100 Дцб, который можно услышать на расстоянии около 100 м.

В качестве питающего элемента следует применить обычную литиевую батарею, так как она будет потреблять минимальный объем энергии и практически необходима для издания тревожного сигнала.

Современные радиолюбители предлагают для функциональности системы встраивать модуль связи, который даст возможность отправлять SMS либо голосовое сообщение на определенный номер, что позволит не только отпугнуть грабителя, но и попытаться задержать его.

Идея о создании лазерной сигнализация была не новой, только все времени на сборку не находил. И вот, наконец, наступили выходные. В магазине была приобретена готовая простенькая сигнализация для автомобиля за 3$. Компактная пьезоэлектрическая головка, внутри которой собрана сама электрическая схема сигнализации.

При подключении к источнику питания, сигнализация издает очень высокий звук, который напоминает милицейской машины.


Итак, стояла задача изготовить датчик для сигнализации. Передатчик - лазерный диод. В магазине также был приобретен простой красный лазер-указка (1$), затем диод с оптикой был снят из заводского корпуса устройства.

Кнопка с лазера была отпаяна.

Минус лазерного диода подключен напрямую к источнику питания, а плюс через ограничительный резистор 30 ом подключен к источнику питания. Источником питания служит импульсный БП от DVD проигрывателя, поскольку блок выдает нужное нам напряжение 6 вольт.


Фотодиод использован от фотоаппарата КОДАК. Схема устроена так, что при наличии света - фотодиод не дает транзисторам открыться, поскольку его сопротивление больше, чем сопротивление резистора на 100К, следовательно ток будет протекать через фотоприёмник. Электрическую схему простой сигнализации смотрите на рисунке (кликните для увеличения).

Как только освещение ослабляется или вовсе исчезает, то сопротивление фотодиода увеличивается и ток начинает протекать через резистор 100К на базу первого транзистора и переход открывается, после чего открывается второй транзистор к коллектору которого подключена сигнализация. После срабатывания сигнализации, реле мгновенно отключает лазерный диод, это сделано для того, чтобы после при наличии освещения сигнализация не отключилась, пока вы сами не отключите его.

Реле подойдет любое, я использовал реле от импортного стабилизатора напряжения без каких-либо переделок.

Нужно учесть, что фото- и лазерный диод должны находится на одном уровне так, чтобы луч лазера осветил фотодиод, последний должен находится в темном корпусе, поскольку солнечное освещение мешает правильной работе устройства. Чувствительность к свету зависит от номинала резистор 100К, при уменьшении его сопротивления, датчик будет более чувствителен.

Расстояние между лазерным диодом и фотоприемником может достигать нескольких метров. Когда объект проходит через зону активации датчика, на миг луч лазера падает на его тело и не освещает фотодиод, в этот момент срабатывает сигнализация и одновременно отключается лазер, чтобы потом он не освещал фоторезистор. Данный датчик можно использовать как датчик для включения дворового света, просто нужно поставить второе реле вместо сигнализации, которое и будет включать свет.

Обсудить статью ЭЛЕКТРИЧЕСКАЯ СХЕМА СИГНАЛИЗАЦИИ

Используя игрушку с лазером, которая стоит, как вы знаете, копейки, можно создать сигнализацию и установить на входе в квартиру, гараж, двор. Расходов почти нету, а выгода несоизмеримо большая.

Чтобы собрать конструкцию, понадобится лазерная указка и несколько радиодеталей. Принцип действия сигнализации основан на чувствительности фоторезистора, реагирующего на луч лазера.

В этом видео показано, как собрать лазерную сигнализацию. Для этого потребуется указка и несколько деталей. Схема устройства собран на таймере 555. Для обнаружения лазерного излучения нам понадобится фоторезистор. Он соединен со вторым резистором, чтобы получить делитель напряжения. Сопротивление второго резистора должна быть сопоставима с фоторезистором. В нашем случае оно равно 100 ом. Когда фоторезистор не облучается, его сопротивление увеличивается. Это приводит к повышению напряжения на 6 ножек микросхемы. В результате появляется логический ноль на выходе микросхемы и включается пищалка.

Выключить динамик и сбросить систему можно, переведи логический анализ динамика на trigger. Переключившись назад, вернем схему в режим готовности.

Для проверки соберем схему на макете. Если все будет работать правильно, соберем на плате. Разместим фоторезистор на длинных ножках, чтобы иметь возможность настроить положение после монтажа. Прикрепим батарейный отёк к плате клеевым пистолетом. Свободные провода закрепим вокруг платы резинкой. Самое время установить систему. В простейшем случае лучше будет подобен растяжке, находящейся по одну сторону двери. Расположенных друг напротив друга. Сначала закрепим сигнализацию. Клейкой лентой закрепим кнопку указки во включенном состоянии. Смонтируем указку на месте. Настройки лучше точно на центр фото резистора. После этого включите систему. Любой входящий будет активировать сигнализацию. Одиночный растяжка работает отлично. С помощью нескольких зеркал можно покрыть лучами всю комнату. Закрепим указку на одной из поверхностей. Луч направлен на одну из стен. Продолжайте добавлять зеркало. Главное, чтобы последнее направляло луч на фоторезистор.

Так как система состоит из одного непрерывного лазера, любое препятствие на пути включит сигнализацию.

Приятным преимуществом такой сигнализации является способность охватить значительное пространство, если дополнить ее системой зеркал. Луч будет пересекать пространство по множеству каналов, контролируя малейшие участки площадки.

Для увеличение длительности работы замените батарейки более мощными или аккумуляторами.

Может вам хочется научиться разбираться в принципе работы электросхем на примере ?



Понравилась статья? Поделитесь ей